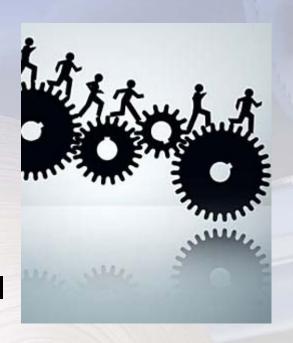


Non-Contact, Laser-Based Technology for Accurately Measuring the Length and Speed of Product in Paper Production

Brad Robillard, Beta LaserMike

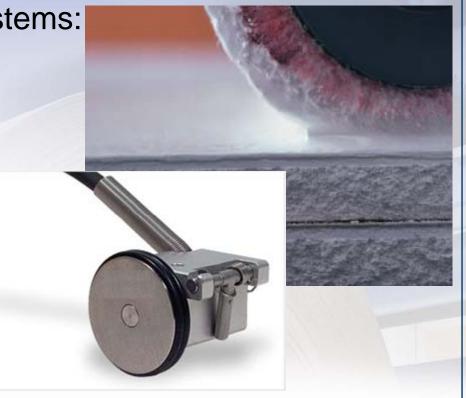

Presentation Overview

- Intro: Productivity and quality challenges
- Non-contact laser measurement technology
- Application examples
- ROI of measurement accuracy
- Conclusion
- Questions

Introduction

- Global competition is fierce
- Manufacturers are driven to optimize productivity, improve quality, and remain economically competitive
- Problem: length and speed measurement inaccuracies cause costly rework, quality issues, material waste, and product returns

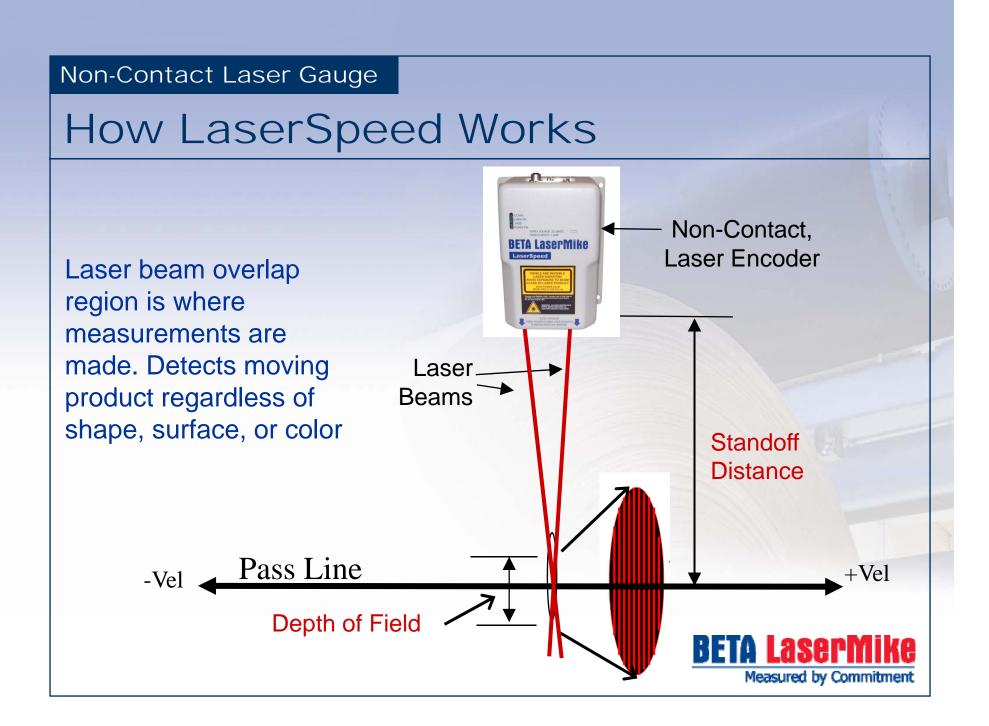
Need for Accurate Length and Speed


Paper manufacturing segments and applications where length and speed measurement accuracy is critical.

Paper Manufacturing Sector	Critical Application Process Requirements
 Paper operations Packaging Converting Laminated paper Coated paper Extrusions Non-wovens 	 Continuous length Cut control Speed control Stretch/draw control Product positioning Quality control Index and positioning

Common Measurement Approaches

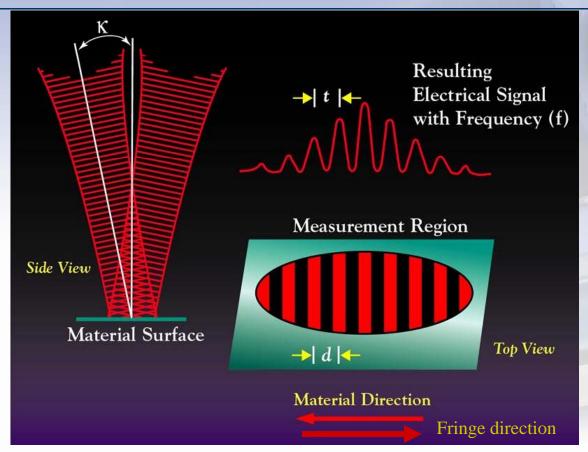
- Contact measurement systems:
 - Rotary encoders
 - Wheel tachometers
 - Drive encoders
- Problems:
 - Slippage
 - Day-to-day wear
 - Debris build-up
 - Mark/damage product
 - Calibration and service
- Inaccuracies >1 2% or greater


LaserSpeed Non-Contact Technology

for accurately measuring length and speed

- Non-contact encoder
- Measures product directly
- Uses Laser Doppler
 Velocimetry (LDV) technology
- Highly accurate, repeatable product length and speed measurements
- Better than .05% accuracy,.02% repeatability
- Permanently calibrated

Laser Doppler Velocimetry (LDV) Theory


$$d = \frac{\lambda}{2\sin\kappa}$$

$$v = \frac{d}{t}$$

$$t = \frac{1}{f}$$

$$V = d * f$$

$$L = \int_0^T v dt$$

LaserSpeed Measurement Capabilities

- Measure product speeds to 39,000 ft/min (12,000 m/min)
- Stand-off distances to 39.4 in (1000 mm)
- Depth of field to 3.0 in (100 mm)
- Customizable pulse rates to 5 MHz

Application Examples

- Profile: Sanitary paper products manufacturing
- Problem: Inaccurate length measurement at slitter/rewinder station due to mechanical encoder errors – slippage, debris build-up
- Solution: LaserSpeed encoder provides near .05% length accuracy
- Results:
 - Eliminated 2% product giveaway
 - Realized \$40,000 savings/yr
 - ROI in 3 months

Application Examples

- Profile: Packaging production
- Problem: Inaccurate cut control due to tachometer slippage, resulting in 90 ft of scrap with each change-over (25 per day)
- Solution: LaserSpeed encoder accurately measures product length/speed; provides precise pulse counts to control cutters
- Results:
 - No slippage errors
 - Cuts boards to target length during change-over
 - Potential savings of \$202K/yr
 - Reduced maintenance costs

Application Examples

- Profile: Business paper manufacturing
- Problem: Over-supplying and shorting product by 2.5% due to tachometer slippage; also flying splice problem
- Solution: LaserSpeed encoder accurately measures length on rewind and controls tension on unwind

Results:

- Higher length & speed accuracy
- Reduced product give-away and scrap
- Precise control of splicing speeds
- Decreased downtime

ROI of Measurement Accuracy

Example

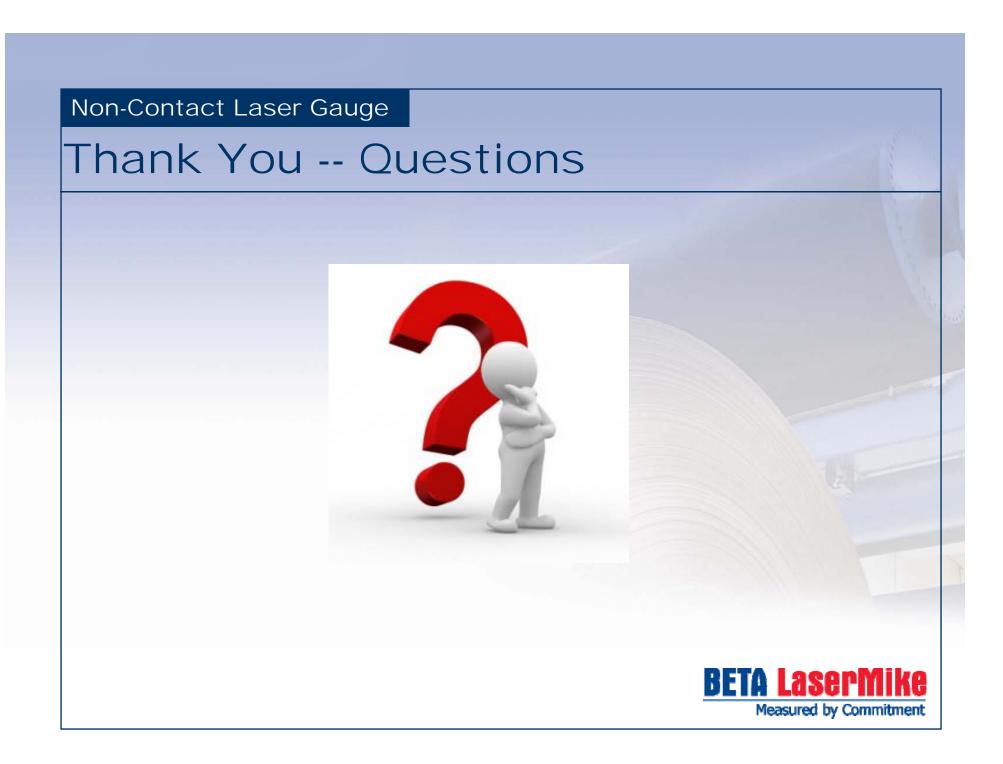
- 355 production days per year
- 22 hours of production a day
- Line rate of 210 ft/min
- Cost to manufacture material is \$0.06/ft
- Current encoder accuracy is 1.5%

Total give-away per line per year: \$88,565

ROI of Measurement Accuracy

Savings are realized by:

- Minimizing product waste
- Reducing product shortages and overages
- Increasing product quality
- Eliminating maintenance
- Minimizing downtime
- Lowering the cost of ownership



Conclusion

- Important that paper manufacturers look at proven ways to increase productivity, product quality, and bottom-line
- Implementing a highly accurate length and speed measurement system is key
- The LaserSpeed non-contact encoder has been proven on many types of manufacturing processes
- Result is precision length and speed measurements for today's quality-driven manufacturers

Measured by Commitment

